Synthesis and Antimicrobial Activity of 3-(*N*-Arylamino)-2-phenylnaphtho[1,3-*d*]-1,2-oxaphosphole 2-Oxides

P. Haranath, U. Anasuyamma, C. Naga Raju, C. Devendranath Reddy and C. Suresh Reddy*

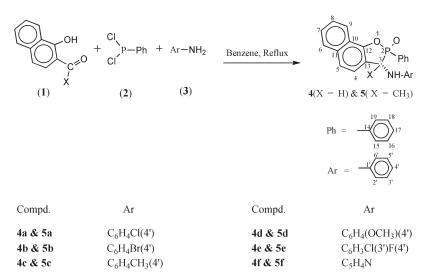
Department of Chemistry, Sri Venkateswara University, Tirupati-517 502, India. e-mail:csureshsvu@yahoo.com Received October 6, 2004

The efficient preparation of *cis*-3-(*N*-arylamino)-2-phenylnaphtho[1,3-d]-1,2-oxaphosphole 2-oxides **4** and **5** is described by a three-component reaction involving phenyldichlorophosphine (**2**) 1-hydroxy-2-naph-thaldehyde/1-hydroxy-2-acetonaphthone (**1**) and different substituted amines (**3**) in anhydrous benzene. The stereo structure, of the products (**4** and **5**), as well as the reaction mechanism of the cyclization is discussed. The title compounds (**4** and **5**) were fully characterized by NMR and mass spectral data. Their anti microbial activity was evaluated

J. Heterocyclic Chem., 42, 775 (2005).

Introduction.

The chemistry of organophosphorus heterocycles has received much attention due to their unique structural features and diverse application in biology and industry. A large number of them were synthesized in the past two decades [1-6]. Although several methodologies for the synthesis of various phosphorus heterocycles have been developed, only a very few approaches were reported for the synthesis of 2,3-dihydro-1,2-benzoxaphosphole 2-oxides. Ageeva [7], Miles [8] and their coworkers [9] reported two different routes for the synthesis of the 2,3-dihydro-1,2-benzoxaphosphole 2-oxide ring system. However, synthesis of the 3-amino oxazaphosphole system is not known. Herein, a new and efficient one-pot synthesis of 3-(*N*-arylamino)-2phenylnaphtho[1,3-*d*]-1,2-oxaphosphole 2-oxides under mild conditions is reported.


Results and Discussion.

Synthesis of *cis*-3-(*N*-arylamino)-2-phenylnaphtho[1,3*d*]1,2-oxaphosphole 2-oxides (4) and (5) in 72-82% yield was accomplished by Mannich-type reaction of phenyldichlorophosphine (2) with 1-hydroxy-2-naph-thaldehyde/1-hydroxy-2-acetonaphthone (1) and different substituted aromatic amines (3) in dry benzene under reflux with stirring for 6-7 h (Scheme 1).

The possible reaction mechanism is of $S_N 2$ - type with retention of configuration. The chemical structures of all the new compounds (4, 5) were confirmed by elemental analysis, ³¹P, ¹³C and ¹H NMR [10,11] (Table 1, 2, 3 and 4) and IR [12-14] (Table 1) spectral analysis. The EI/MS spectra of 4 and 5 show the existence of strong molecular ion peaks, indicating that the heterocyclic skeletons are of some stability under the EI/MS conditions.

Theoretically formation of two stereoisomers of **4** and **5** is possible in this reaction because of the presence of two different substituents at C₃ and P in the rigid oxaphosphole ring. However, the ³¹P NMR spectra of **4** and **5** exhibited only one signal instead of two [14]. In the ¹H NMR spectra of **4** also the C₃-*H* proton signal appeared as a doublet only ($\delta = 5.69-6.12$, ²*J*_{PCH} of ~ 8.0 Hz) due to its coupling with

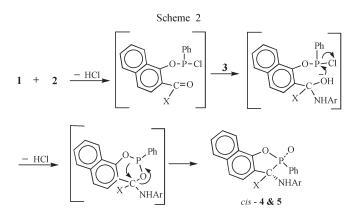
Vol. 4	12
--------	----

Compd.	mp(°C)	Yield	Mol.formula	Elemental analysis				IR				
		(%)	(Mol.wt)	Foi C	und(Calcd) H	1% N	P=O	ЪC	N-H			
4 a	146-148	72	C II O DNCI	68.65			P=0 1256	P-C _(aliphatic) 736	N-н 3410	12 20		
44	140-148	12	$C_{23}H_{17}O_2PNCl$		4.22	3.45	1230	/30	5410	13.20		
4	102 104	70	(405.6)	(68.77	4.23	3.46)	1002	740	2440	1421		
4b	182-184	78	$C_{23}H_{17}O_2PNBr$	61.33	3.80	3.11	1203	746	3448	14.31		
	100 100	74	(450.0)	(61.53	4.79	3.10)	1000	72.0	2 4 4 0	14.01		
4 c	190-192	74	$C_{24}H_{20}O_2PN$	74.78	5.23	3.64	1229	732	3440	14.01		
	100 120		(385.2)	(74.91	5.22	3.63)	1000	740	2 400	12.02		
4d	128-130	82	$C_{24}H_{20}O_3PN$	71.81	5.02	3.49	1220	740	3408	13.02		
			(401.4)	(71.73	5.04	3.50)						
4 e	210-212	76	C ₂₃ H ₁₆ O ₂ PNClF	65.16	3.81	3.31	1214	735	3404	13.34		
			(423.6)	(65.22	3.80	3.32)						
4f	151-153	73	$C_{22}H_{17}O_2PN_2$	70.95	4.60	7.52	1196	726	3440	14.65		
			(372.1)	(70.81	4.60	7.53)						
5a	168-170	72	C ₂₄ H ₂₀ O ₂ PNCl	68.48	4.79	3.33	1210	739	3412	14.67		
			(420.6)	(68.62	4.80	3.34)						
5b	205-207	76	C ₂₄ H ₂₀ O ₂ PNBr	61.93	4.33	3.01	1210	746	3372	14.31		
			(465.1)	(62.00	4.32	3.00)						
5c	250-252	79	C ₂₅ H ₂₃ O ₂ PN	74.97	5.79	3.50	1230	740	3390	13.60		
			(400.2)	(74.89	5.80	3.51)						
5d	231-233	81	C ₂₅ H ₂₂ O ₃ PN	72.28	5.34	3.37	1205	736	3422	14.02		
			(415.4)	(72.12	5.35	3.38)						
5e	208-210	77	C24H19O2PNCIF	65.67	4.37	3.19	1202	735	3422	14.64		
			(438.6)	(65.56	4.38	3.20)						
5f	108-110	79	$\mathrm{C}_{23}\mathrm{H}_{20}\mathrm{O}_{2}\mathrm{PN}_{2}$	71.29	5.21	7.24	1242	732	3398	14.18		
			(387.2)	(71.37	5.20	7.22)						

Table 1 Physical, IR and ³¹P NMR Spectral Data of **4** and **5**

 Table 2

 ¹³C NMR Spectral Data of Some Members of 4 and 5 [a]


Compd.	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-3	C(3)-C
4a	119.16	127.34	127.34	129.91	125.16	129.21	139.32	130.26	147.45	147.45	72.52	-
4c	118.74	128.75	128.89	129.92	124.85	129.92	135.81	130.81	(d, J=6.8) 148.00	(d, J=7.8) 148.00	(d, J=116.8) 51.91	-
4d	118.76	124.89	128.76	130.27	125.295	130.273	137.521	130.01	(d, J=7.7) 147.73	(d, J=7.75 147.73	51.28	-
4e	118.91	128.78	128.82	131.63	122.12	131.63	130.60	130.15	(d, J=8.1) 146.34	146.34	51.6	-
5a	119.24	128.66	128.66	129.78	125.005	130.065	139.30	130.06	(d, J=8.6) 148.02	(d, J=8.6) 148.02	60.29	24.30
5b	118.14	128.58	129.84	129.84	126.80	130.67	130.24	130.01	(J=8.4) 149.20	(J=8.4) 149.20	69.89	25.30
5c	118.72	128.17	128.88		125.77	130.87	137.96	130.53	148.18 (d, J=11.5)	148.18 (d, J=11.5)	61.02	24.03
5d	118.46	127.62	128.88	130.10	125.59	130.04	139.18	130.43	146.75	146.75	70.12	25.41
5f	118.11	125.29	126.22	132.09	126.92	127.68	132.66	130.11	150.44	150.44	75.22 (d, J=117.1)	22.96

[a] J (Hz) in parenthesis.

phosphorus instead of expected doublet of doublet for two isomers [15]. The ${}^{2}J_{P,CH}$ coupling constants of *cis*-isomers in similar systems are reported in the range of 2.0 - 8.0 Hz while for the *trans*-isomer the value is 15.0 - 20.0 Hz. Appearance of only one ${}^{31}P$ NMR chemical shift and C₃-*H* NMR signal as doublet instead of doublet of doublet with coupling constant corresponding to those of *cis*-isomers in similar systems suggested that the compounds **4** and **5** formed are the *cis*-forms. The steric hindrance of the bulky phenyl groups at C_3 and P appears to control the stereochemistry of this reaction.

Antimicrobial Activity.

All the members of **4** and **5** were screened for their antibacterial activity against *Staphylococcus aureus* and *Escherichia coli* (10⁶ cell/ml) by the disc diffusion method [16] in nutrient agar medium. Three concentrations of 4 and 5 (100, 250 and 500 μ g/disc) dissolved in dimethylfor-

mamide (DMF) were added to each filter disc and DMF was used as control. Plates were incubated at 37 °C and examined for zone of inhibition around each disc after 24 h. The results were compared with standard antibiotic penicillin (250 μ g / disc). Their antifungal activity [17] was also evaluated against *Aspergillus niger* and *Helminthosporium oryzae* at concentrations of 100, 250 and 500 μ g/disc. Griseofulvin was used as reference compound. The fungal cultures were grown on potato dextrose broth at 25 °C for 72 h and finally spore suspension was adjusted to 10⁵ spores/ml. It is interesting to observe that the 3-(4'-aminopyridine) substituted compound (**4f**) exhib-

 Table 3

 ¹³C NMR Spectral Data of Some Members of 4 and 5 [a]

Compd. C-14	4a 148.12 d, J=101.5)	4 c 148.70 (d, J=81.4)	4d 150.21 (d, J =101.9)	4e 147.95 (d, J=103.1)	5a 148.20 (d, J=102.5)	5b 148.81 (d , J =101.6)	5 c 148.70 (d, J=91.5)	5d 147.95 (d, J=105.5)	5f 133.54 (d, J =89.1)
C-15 C-16 C-17 C-18 C-19 C-1' C-2' C-3' C-4' C-5' C-6'	$129.63 \\ 129.87 \\ 125.03 \\ 129.78 \\ 129.66 \\ 139.32 \\ 124.80 \\ 128.78 \\ 129.82 \\ 128.78 \\ 129.82 \\ 128.78 \\ 124.80 \\ 1$	$122.52 \\ 130.95 \\ 130.46 \\ 130.27 \\ 118.77 \\ 139.39 \\ 125.00 \\ 128.84 \\ 129.85 \\ 128.84 \\ 125.20 \\ 125.20 \\ 122.20 \\ 1$	117.82 130.30 127.35 130.30 117.82 139.32 125.55 128.82 129.87 128.82 125.55	$123.72 \\ 139.58 \\ 136.30 \\ 122.10 \\ 118.30 \\ 135.81 \\ 121.68 \\ 126.72 \\ 129.74 \\ 126.72 \\ 121.68 \\ 121.68 \\ 126.72 \\ 121.68 \\ 121.68 \\ 126.72 \\ 121.68 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 121.68 \\ 126.72 \\ 1$	$119.81 \\ 129.89 \\ 134.59 \\ 119.93 \\ 118.50 \\ 136.076 \\ 121.60 \\ 127.43 \\ 129.84 \\ 127.43 \\ 121.60 \\ $	$125.73 \\ 130.82 \\ 127.40 \\ 136.90 \\ 120.15 \\ 146.79 \\ 113.86 \\ 130.44 \\ 123.74 \\ 130.44 \\ 113.86 \\ 130.44 \\ 1$	$122.52 \\ 130.95 \\ 130.46 \\ 130.27 \\ 118.77 \\ 139.39 \\ 125.00 \\ 128.84 \\ 129.85 \\ 128.84 \\ 125.20 \\ 125.20 \\ 122.20 \\ 1$	$123.72 \\139.58 \\136.30 \\122.10 \\118.30 \\135.81 \\121.68 \\126.72 \\129.74 \\126.72 \\121.68 \\$	122.23 124.83 125.29 124.83 120.56 132.58 127.79 150.44 150.44 150.44
Ar-C/O-C	C -	16.90	30.2	-	-	-	16.90	31.04	-

[a] J (Hz) in parentheses.

 Table 4

 ¹H NMR Spectral Data [a] of 4 and 5

Compd.	Aromatic-H	N-H	P-C- <i>H</i> /P-C-C <i>H</i> ₃	Ar-CH ₃ /Ar-OCH ₃
4a	6.54-6.79	8.12(s)	6.12	-
	(m,15H)		(d, <i>J</i> =7.9)	
4b	6.52-7.78	8.72(s)	5.69	-
	(m,15H)		(d, J = 8.1)	
4c	6.85-7.30	8.54(brs)	5.90	2.27(s)
	(m,15H)		(d, J = 8.2)	
4d	6.52-8.24	8.60(s)	5.67	3.56(s)
	(m,15H)		(d, J = 8.7)	
4e	6.68-7.73	8.30(s)	6.04	-
	(m,14H)		(d, J = 8.0)	
4f	6.67-7.12	8.13(s)	5.91	-
	(m,15H)		(d, J = 8.2)	
5a	6.59-7.67	8.24(s)	2.1	
	(m,18H)		(d, <i>J</i> =8.2)	-
5b	7.02-7.73	8.12(brs)	2.09	
	(m,18H)		(d, <i>J</i> =7.9)	-
5c	7.08-7.79	8.51(s)	2.12	
	(m,18H)		(d, <i>J</i> =7.7)	2.26(s)
5d	7.05-8.18	8.29(s)	2.08	
	(m,17H)		(d, <i>J</i> =8.3)	3.40(s)
5e	6.78-7.69	8.01(s)	2.09	
	(m,17H)		(d, <i>J</i> =8.1)	-
5f	7.02-8.18	8.18	1.73	
	(m,18H)	(d, J = 7.12)	(d, <i>J</i> =8.5)	-

[a] J(Hz) given in parenthesis.

ited more antibacterial activity while the 3-(4'-bromophenyl) (**5b**) and 3-(4'-methyl) substituted compounds (**4c**) showed equal antimicrobial activity than that of the standard (Table 5). Research Scholar, Department of Botany, Sri Venkateswara University, Tirupati for her help in antimicrobial studies, the Director of CDRI, Lucknow and SIF, IISC, Bangalore for the elemental and the spectral data and UGC, New Delhi for providing Financial Assistance.

 Table 5

 Antimicrobial Activity of 4 and 5 in Terms of Zone of Inhibition (mm)

Compd.			Fung	gi					Bacte	eria		
-	Aspergillus niger		Helminth	Helminthosporium oryzae			erichia d	coli	Staph	Staphylococcus aureus		
	500	250	100	500	250	100	500	250	100	500	250	100
4a	21	12	5	19	10	7	24	11	5	26	11	6
4b	19	13	6	19	9	6	23	10	4	25	11	6
4c	19	10	5	18	6	4	24	12	5	21	9	-
4d	20	12	4	19	8	5	22	10	3	22	11	6
4 e	18	14	4	20	10	8	22	11	5	26	10	5
4f	24	13	4	17	9	6	21	13	4	21	10	5
5a	21	12	5	20	12	6	23	10	3	20	10	6
5b	22	12	5	19	11	6	20	12	-	24	11	4
5c	19	13	3	16	8	5	21	11	5	24	12	5
5d	20	12	4	17	8	5	25	10	4	22	11	6
5e	24	14	6	19	11	6	24	9	4	20	12	5
5f	23	13	5	18	10	5	22	9	3	21	11	4
Control*		16			17			12			14	

'-'Indicates no activity; * Griseofulvin for fungi and Penicillin for bacteria.

EXPERIMENTAL

Melting points were taken on Mel-Temp apparatus and are uncorrected. Elemental analyses were performed by the Central Drug Research Institute, Lucknow, India. IR spectra were recorded as KBr pellets and Nujol mulls on a Perkin Elemer 283 unit. The ¹H, ¹³C and ³¹P NMR spectral were taken on AMX 400 MHz spectrometer operating at 400 MHz for ¹H, 100 MHz for ¹³C and 161.9 MHz for ³¹P. Compounds were dissolved in DMSO- d_6 . The chemical shifts in δ were referenced to TMS (¹H and ¹³C) and 85 %H₃PO₄ (³¹P). Mass spectra were recorded on a Hewlett-Packard 5988 instrument.

1-Hydroxy-2-naphthaldehyde and 1-hydroxy-2-acetonaphthone (1) are procured from Aldrich Chemical Company, Inc, USA. Dichlorophenylphosphine (2) is procured from Lancaster Synthesis Ltd., Lancashire, England and were used without further purification.

General Procedure for Preparation of 4 and 5.

To a stirred solution of aromatic amine **3** (5 mmol) and phenyldichlorophosphine (**2**, 0.89 g, 5 mmol) in anhydrous benzene (15 ml), a solution of 1-hydroxy-2- naphthaldehyde/1-hydroxy-2-acetonaphthone **1** (5 mmol) in anhydrous benzene (15 ml) was added drop wise at room temperature. Stirring was continued at room temperature for another 0.5 h after which the mixture was heated under reflux for 6-7 h and cooled. A white precipitate formed that was collected by filtration and recrystallized from a 1:1 mixture of CHCl₃/petroleum ether (bp 60-90 °C) to give pure *cis*-**4** and **5**.

Acknowledgements.

The authors express thanks to Ms. M D. Kamar Jahan,

REFERENCES AND NOTES

[1a] J. Bergman, H. C. Van der Plas and M.Simonyi, Heterocycles in Bioorganic Chemistry, RSC; Cambridge, 1991; [b] R. Y. Chen and L. Z. Liu, *Prog. Nat. Sci.*, **5**, 42 (1995); [c] B. H. Lipshutz, *Chem. Rev.*, **86**, 795 (1986).

[2a] Y. Nishizuka, *Nature*, **308**, 693 (1984); [b] V. L. Boyd, M. F. Summers, S. M. Ludeman, W. Egan, G. Zon and J. B. Regan, *J. Med. Chem.*, **30**, 366 (1987).

[3a] S. Y. Wu and J. E. Casida, *Phosphorus, Sulfur, Silicon & Relat. Elem.*, **102**, 177 (1995);
 [b] C. D. Reddy, M. S. Reddy, M. S. R. Naidu and K. D. Berlin, *Phosphorus, Sulfur, Silicon & Relat. Elem.*, **102**, 103 (1995);
 [c] A. Hirashima, *Agric. Bio. Chem.*, **53**, 175 (1989).

[4a] R. S. Edmundson, O. Johnson and D. W. Jones, *Phosphorus, Sulfur, and Silicon*, 46, 61 (1989); [b] R. S. Edmundson, O. Johnson, D. W. Jones and T. J. King, *J. Chem. Soc., Perkin Trans.* 2, 69 (1985); [c] O. Johnson; D. W. Jones and R. S. Edmundson, *Acta Cryst. C.*, 45, 142 (1989).

[5a] B. Gordillo, C. Garduno, G. Guadarrama and J. Hernandez, J. Org. Chem., **60**, 5180 (1995); [b] C. Meier, Angew. Chem., **108**, 77 (1996); Angew. Chem. Int. Ed. Engl., **35**, 70 (1996); [c] M. Sasaki, K. Moriguchi and K. Yanagi, Agric. Bio. Chem., **52**, 159 (1988).

[6a] R. Y. Chen and R. Bao, *Synthesis*, 616 (1989); [b] R. Y. Chen J. S. Tang *Phosphorus, Sulfur, Silicon & Relat. Elem.*, **48**, 259 (1990).

[7] A. B. Ageeva and B. E. Ivanov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1494 (1967); *Chem. Abstr.*, **68**, 39 738 (1968).

[8a] J. A. Miles, R. C. Grabiak and C. Cummins, J. Org. Chem.,
47, 1677 (1982); [b] M. A. Goksel, US Patent, 4 219 519 (1980); Chem.
Abstr., 93, 243772 (1980); [c] R. C. Grabiak, US Patent, 4 250 320 (1981); Chem. Abstr., 94, 192 458 (1981).

[9a] G. H. Birum, US Patent, 3 965 127 (1976); Chem. Abstr., 85, 143 295 (1976); [b] G. H. Birum, US Patent, 3 980 618 (1976); Chem. Abstr., 86, 72 865 (1977).

[10a] E. O. John Bull, M. S. R. Naidu and C. Naga Raju, *Indian J. Chem.*, **29B**, 688 (1990); [b] E. O. John Bull, M. S. R. Naidu and C. Naga

Raju, Indian J. Chem., 29B,691 (1990).

[11] L.D. Quin and J.G. Verkade, Phosphorus -31 NMR Spectral Properties in Compound Characterization and Structural Analysis, VCH Publisher, Inc, New York, 1994

[12] L.C. Thomas and R A. Chittenden, *Chem. Soc.* (London), 1913 (1961).

- [13] R.A. Nyquist, Spectro. Chim. Acta., 19, 713 (1963).
- [14] L.C. Thomas, The Interpretation of the Infrared Spectra of

Organophosphorus Compounds, Heydon, London, 1974.

[15] J. Zhou, Y. G. Qiu, K. S. Feng and R. Y. Chen, *Synthesis*, 1, 40 (1999).

[16] J. G. Colle, J. P. Duguid, A. G. Fraserm and B. P. Marmion, Mackie and Mc Cartney Practical Medical Microbiology, 13th ed, Vol **2**, Churchil Livengstone, London, 1989.

[17] P. Uma Maheswari Devi, P. Srinivasa Reddy, N. R. Usha Rani and P. Reddemma, *Eur. J. Plant Pathol.*, **106**, 857 (2000).